

CARDIAC CELL PHYSIOLOGY

CARDIAC CELL PHASES: RESTING, DEPOLARIZATION AND REPOLARIZATION

TYPES OF CARDIAC CELLS

MEMBRANE POTENTIAL VS ACTION POTENTIAL

ION CHANNELS

CARDIAC MUSCLE CONTRACTION AND RELAXATION

CARDIAC CELL PHYSIOLOGY1

3 phases of cardiac cells:

1.RESTING

2.DEPOLARIZATION

3.REPOLARIZATION

1.At rest, cell is more negative inside than outside mainly due to ATP pumps, e.g. Na/K pump (3Na out/2K in).Proteins and phosphates are big negative molecules found inside the cell.

Ack Mich

CARDIAC CELL PHYSIOLOGY 2

- 2.DEPOLARIZATION:cell turns from negative to positive inside.
- The cause of depolarization is an influx of ions of Na and Ca inside the cell.
- Depolarization is propagated from cell to cell producing a wave of depolarization that can be transmitted to the entire heart. This wave represents a flow of electrons (negative charges outside), an electrical current that can be detected by electrodes placed on the surface of the body.

3.REPOLARIZATION:cardiac As cells restore their resting polarity (negative inside)

- Cause: Na and Ca channels close and K channels open so an efflux of K ions leaves the cell.
- Repolarization can be sensed by recording electrodes.
- All of the different waves that we can see on an EKG are manifestations of these 2 processes: depolarization and repolarization.

CARDIAC CELL PHYSIOLOGY 3

	resting	depolarization	repolarization
inside of the cell	negative	positive	negative
due to	proteins phosphates Na/K pump	influx Na, Ca	efflux K
propagation from cell to cell	no	yes	yes

CARDIAC CELL PHYSIOLOGY 4

3 TYPES OF CARDIAC CELLS

Ask Mish

3 TYPES of CARDIAC CELLS:

pacemaker cells
= electrical power source
SA node (1) or AV node (2)

electrical conducting cells = wire of the heart AV node(2) His bundle(3) with 2 branches(4,5) and Purkinje fibers(6)

myocardial cells
= contractile pump of the heart

(transient)

2 TYPES OF RESTING POTENTIAL

2 TYPES OF ACTION POTENTIAL

3 TYPES OF ION CHANNELS

	TYPE OF CHANNELS	DESCRIPTION
Ι	VOLTAGE GATED	 "GATED" called like this because of an imaginary gate that opens or closes in this case at voltage variation across the cell membrane allowing or not ions inside the cell. There are voltage gated channels for Na, Ca and K, usually more than one type for each ion. When one channel opens (is activated) in one phase, the previous opened channel usually closes (is inactivated). Order of activation/inactivation in action potential: Na -> Ca ->K
Π	RECEPTOR GATED	"GATE" opens or close in this case in response to a molecule binding to a receptor. e.g. ATP binding to a receptor on a K channel or Acetylcholine binding to a receptor on a K channel
III	LIGAND GATED (SPECIFIC IONS AND CHEMICAL LIGANDS)	opens in response to ions influx in the cell e.g. Ca influx in vascular smooth muscle opens a K channel

3 TYPES OF ION CHANNELS

Ask Mish

	Na channels			Ask Mish		
	slow Na If	"funny current" in phase 4 of pacemaker potential		K channels		
	fast Na	phase 0 (depolarization) of non-pacemaker cardiac action potential			KATP channels, inhibited by ATP; in vascular smooth muscle, adenosine (final ATP metabolite)	
	K channels		ATP sensitive		opens K channels resulting	
	transient outward Ito	phase 1 of non-pacemaker cardiac action potential		IK, ATP Acetylcholine activated IK, ACh	opened by Acetylcholine; Gi protein coupled	
	slow delayed rectifier lks	phase 3 of cardiac action potential, starts in phase 2				
	rapid delayed rectifier Ikr	phase 3 of cardiac action potential, continues in phase 4				
	inward rectifier Iкı or lir	phase 4 of cardiac action potential and late 3				
	Ca channels					
	L-type Ica-i	ong-lasting current: phase 0 (depolarization) of pacemaker		K channels		
		AP, phase 2 of non-pacemaker cardiac AP		Calaium activated	open in response to Calieflux in	
	T-type Іса-т	transient current: phase 4 of pacemaker action potential in SA and AV node		Ik, Ca or BKCa	vascular smooth muscle	

HEART: ACTION POTENTIALS

Action potential (AP) is Ask Mish propagated from cell to cell. It is generated by the pacemaker (sinoatrial node)

Then is propagated to atrial muscle cells, AV node, bundle of His then bundle branches and finally through Purkinje fibers to the contractile pump which is ventricular myocardium.

Depolarization and repolarization phases of the action potentials passing through these tissues are recorded on a special paper by electrodes placed on the skin and is called EKG or ECG.

AP: MYOCARDIAL CONTRACTION

AP: MYOCARDIAL RELAXATION

