

- First 5 slides : definitions of epidemiology, biostatistics and public health and their connection
- Next slide compares two concepts : health vs disease
- Last slide from introduction part- other two concepts related to disease are compared : signs vs symptoms

Ask Mish

Ask Mish

PRACTICE!!!

Ask Mish

	epidemiology	biostatistics	public health
refer to	study of DISEASES in a way that you can:	application of STATISTICS	application of theories from Epidemio \& Biostat.
action	prevent and control disease (THEORY)	to exclude events in medicine that are due by chance alone	to prevent and control disease(PRACTICE)
on:	population not one person !!!!	population not one person !!!!	population not one person !!!!

- HEALTH
- complete:
physical
- mental
- social well being
- not absence of disease
- DISEASE:
- diagnosis using:
- signs
- symptoms
- history
- test results

Ask Mish

- SIGN:
- objective evidence of disease
- can be seen/
- can be measured
- e.g.vital signs
- SYMPTOM:
- subjective evidence of disease
- a feeling of subject
- others cannot seel measure
- e.g. headache

Ask Mish

- next slide is about the beginning of epidemiology
- next 3 slides refer to DISTRIBUTION of disease in the world: define endemic, epidemic, pandemic (concepts applied to contagious diseases)
- next slides refer to the way the level a disease is assessed in epidemiology through rates: types of rates, rate of diseases in the US, most important rates (incidence \& prevalence) and other rates used (attack rate, cumulative incidence, vital rates)

- John Snow is the founder of Epidemiology
- in 1854 he investigated an outbreak of cholera in London
- he founded it was related to a water source
- he made maps and followed the addresses of dead people to find the source

- Distribution = presence in the world: endemic,epidemic, pandemic
- Level of presence in any part of the world is assessed through RATES (number of diseases in population)
- Determinants refers to causes and risk factors

- epi=on/ upon, demos=people, logos=science, all from Gr.
- studies DISEASES among people :distribution\&determinants
- DISTRIBUTION of DISEASES
- endemic at expectation
-
- epidemic disease above expectation in one point
- pandemic disease above expectation in many points/or spreading
- beyond national borders (worldwide)

below or @ the level of expectancy

EPIDEMIC:
above the level of expectancy in one point meaning a limited territory

PANDEMIC:
above the level of expectancy in many points (territories) in the same time or spreading from one territory to another (beyond national borders) sometimes worldwide

Ask Mish

endemic
*green color: under the level of expectancy for a disease

* red color: above the level of expect.

epidemic

pandemic
* percentages in the middle graph are not important, just meaning a limited territory above the level vs last graph where is above the level and spreading worldwide
- Rates are ratios (numerator / denominator)
- in epidemiology : \# diseases/\#population*
- \# = number
- *population at risk: susceptible to a given disease
- if refer to total population we have crude rates
- if refer to group of population we have specific rates (e.g.:gender, age, marital status, socioeconomic status)
- if rates are adjusted to allow comparison: adjusted rates(e.g comparing the same age group)

CRUDE RATE:	$4 / 100$ (1)
SPECIFIC RATE:	$4 / 20 \& 0 / 80(1)$
ADJUSTED RATE:	$4 / 20$ (1)
	$0 / 80(1)$

COLORS: age groups :
blue: < 60 yo

DIFFERENT
SAME

SAME

1/100 (2)
1/5 \& 0/95 (2)
1/5 (2)
0/95 (2)

- What is the rate of AIDS in US ?
- 220/100K
- 90/100K
- 500/100K
- 15/100K
-65/100K

- Any disease in the US is < 50/100K !!!!!!!!!

- Incidence $=$ rate of occurrence of new cases of disease among total population in a period of time (never a point in time)
- I = new cases/total population $\mathbf{x} 100$
- Prevalence $=$ rate of all existing cases of disease among total population in either a point in time or a period in time
- $\quad \mathbf{P}=$ all cases/total population $\mathbf{x} \mathbf{1 0 0}$
- $\mathrm{P}=\mathrm{I} \times$ average time duration of disease, meaning all new cases that are not solved become cases in prevalent pot

incidence vs prevalence		
	Incidence	Prevalence
	occurrence of new cases (rate)	occurrence of all existing cases (rate)
among	all population	all population

Attack rate*
Cumulative incidence*

- used instead of incidence
- during a disease outbreak in a narrowly-defined population over a short period of time
- AR= \#affected/\#exposed
- e.g. :AR in case of food poisoning in a restaurant
- is an incidence in a defined period of time
- in this case you are not interested what date exactly happened but you add all new cases in the period, that is why is called cumulative
- it is expressed as a proportion so it is also called proportion incidence

Incidence decrease	Prevalence decrease
effective primary prevention	decreased incidence
	new cases recover quickly in time
	increased recovery
increase population	increase population

in black ways of decreasing Incidence
in black ways of decreasing Incidence
vs ways of decreasing Prevalence

1. RECOVERY

General population

PREVALENCE pot: all cases

INCIDENCE: new cases

$\Delta \Delta T=$ time

- Birth rate:number of births @1000people
- Birth rate=births / population $\times 1000$
- Death rate:number of deaths @1000people
- Death rate $=$ deaths / population $\times 1000$
- Case fatality rate: number of cases that end up in death;
- $\mathbf{C F R}=$ deaths from a cause / diseased $\times 100$
- Proportionate mortality rate(PMR)= deaths from a cause / all deaths $\times 100$

- Fertility rate=number of children/fertile woman
- Fertility rate $=$ births / women of childbearing age(15-49) x1000
- Infant mortality rate : deaths 0-1 yo from 1000 live births; neonatal 0-28day, perinatal: 28days-1 year
- IMR = deaths 0-1 yo / live births x1000
- IMR in US is 7/1000; different among ethnic groups:whites \&hispanics - 6/1000, black-13/1000
- Major causes:
- 1.genetic
- 2.low birth weight <1500 g
- 3.SIDS - never let infants sleep on the belly
- Low birth weight $=1$ st cause in blacks, SIDS $=1$ st cause in native Americans

	BIRTHS	DEATHS	DISEASES
Total population $/ 1000$	Birth rate	Death rate	Incidence (new) Prevalence (all)
Groups of population:infants/ mothers $/ 100,000$		IMR	
Groups of population: diseased/ dead $/ 100$		MMR	

Ask Mish

- definition of risk in epidemiology
- risk vs incidence
- definition of risk factors and causes
- importance of risk factors and causes
- the probability of occurrence of a new case in a time period is called RISK.
- if the period of time you choose is lifetime then it is a lifetime risk.

	Incidence	Risk
refer to	occurrence of new cases (rate)	probability of occurrence of new cases (rate)
among	all population	all population
time	period of time	period of time

DETERMINANTS: CAUSES \& RISK FACTORS

	Causes	Risk Factors
refer to	 environmental factors	 environmental factors
action	DETERMINES	INCREASE the probability of
on:	the occurrence of disease	the occurrence of disease

1. Knowing causes and risk F

-used to prevent and control disease by removing causes and risk F

2. Not knowing causes and risk F

-an epidemiological study is recommended to determine them

- The next slides are about the level of prevention of a disease: primary, secondary and tertiary prevention
- Related to secondary prevention there are few slides about understanding screening tests. This includes: screening test table, concepts like: sensitivity, specificity, positive predictive value, negative predictive value, accuracy. Also includes one example of how to calculate all the values above and relationship sensitivity vs specificity for the same test.

ONSET disease

Ask Mish

Clinical diagnostic: No disease Disease clinical course (blue arrow)

Levels of prevention	Primary	Secondary	Tertiary
Ways of prevention	remove risk factors	 treatment	reduce complications
Examples of prevention	vaccines, folate, exercise, seat belts	screening tests	Beta-blockers post MI

- Preventing new cases of disease(incidence)=primary; e.g.: vaccines, spreading information about disease
- Preventing disease(prevalence) by detecting it early = secondary; e.g.: screening tests, quit smoking advice
- Preventing disease by applying recovery programs= tertiary; recovery after myocardial infarct

	DISEASED people	HEALTHY people	
TEST POSITIVE	true positive	false positive	positive predictive value
TEST NEGATIVE	false negative	true negative	negative predictive value
	sensitivity	specificity	accuracy

- Sensitivity= percentage of people w/ disease detected by test
- Specificity=percentage of healthy p.detected by test
- $\mathbf{P P V}=$ if a test is positive what is the chance to be true
- NPV=if a test is negative what is the chance to be
- Accuracy : what is the chance that a test $(+$ or -$)$ is true $=\operatorname{tp}+\operatorname{tn} /$ all tested $(\mathrm{tp}$ $+\mathrm{tn}+\mathrm{fp}+\mathrm{fn}$); chance=$=$ percent

Ask Mish

	disease:100	healthy:100	
test positive	(0) true positive		
test negative	20 false positive	PPV:80/90	

- $\mathrm{PPV}=\mathrm{TP} / \mathrm{FP}$ low usually because TP low in comparison to FP
- SENSITIVITY = TP / FN if high, because TP high in comparison to FN
- INCREASING SENSITIVITY usually by decreasing the screening test threshold which will produce an increase in TP but also in FP
- Relationship sensitivity vs specificity: any increase in FP will decrease specificity! Remember SPECIFICITY = TN/FP. We can say any increase in sensitivity will produce a decrease in specificity!

- refer to observational(non-intervention) studies vs interventional studies
- definition of each type of study
- ways to test a hypothesis in both observational studies and interventional studies.
- Most common mistakes in studies aka bias in research

Ask Mish

1.observational

2.experimental

- OBSERVATIONAL = non interventional studies
- EXPERIMENTAL = interventional studies
- 1. case report
- 2. case series
- 3. cross - sectional
- 4. case - control
- 5. cohort
- RCT = random control trials

Ask Mish

- 1.CASE REPORT or CASE SERIES REPORT= report of one case or a small \# of cases of a disease with low prevalence
- 2.CROSS SECTIONAL= disease vs non disease one point in time

- 3.CASE CONTROL= one disease followed back in time to find associated causes and risk F
- 4.COHORT = one risk F followed in the future to find associated disease(s)
- 5.RCT $=$ interventional study to verify a hypothesis vs all the above which are observational (noninterventional)

	DISEASE	NO DISEASE
EXPOSED	\mathbf{A}	\mathbf{B}
NON EXPOSED	\mathbf{C}	\mathbf{D}

*2 groups of people: exposed to a risk F vs nonexposed
$A, B, C, D=$ number of people from the 2 groups above that have disease/not

- if A>>>C then A RISK FACTOR could be highly probable.
- A hypothesis is formulated but cannot be tested in case report and case series report also called DESCRIPTIVE studies
- Hypothesis could be verified in cross sectional, case control and cohort study. What we want to see is if $\mathrm{A}>\mathrm{C}$ due to hazard or the value is statistically significant = ANALYTICAL studies
- Hypothesis testing : uses formulas for each study to see if the association of risk F w/ disease is due to hazard or is statistically significant. Below are the name of formulas used to test this association for each study.

	DISEASE	NO DISEASE
EXPOSED	\mathbf{A}	\mathbf{B}
NON EXPOSED	\mathbf{C}	\mathbf{D}

cross sectional: chi square

- case control: odds ratio
- cohort: relative/attributable risk

cross
Ask Mish

OR = odds of exposure for cases divided by odds of exposure for controls
$a / c: b / d=a d / b c$

	disease	no disease
exposed	a	b
non exposed	c	d

> RR = incidence among exposed vs incidence among unexposed
> $a / a l l: c / a l l=a / c$ (DIVISION)
> Question for RR:
> how much more likely?

$$
R R R^{*} \text { or } R R I^{*}=|1-R R|
$$

AR = also called absolute risk reduction $=A R R$
$A R=$ incidence in the exposed -incidence in the control Question for AR: how many more cases in E vs U?

NNT * \& NNH* $=1 /$ ARR

- $\quad=1$ means no association disease-risk factor, >1 is increased risk for disease in exposed and <1 means decreased risk of disease in exposed.
- Calculation: $\mathrm{RR}=2.5$ means 150% increased risk; $\mathrm{RRI}=\mid 1-$ $R R \mid x 100$ so $R R I=|1-2.5| x 100 ; R R I=150 \%$. RR= 0.3 means 70% decreased risk; $R R R=|1-0.3| \times 100=70 \%$
- Application of RR in clinical practice:
- Let's suppose we have a study in which we used Estrogen/ Progesterone to decrease the risk of CAD. Final result $: R R=0.39$ meaning $R R R=61 \%$ equals 61% less risk of disease in the E/P group. If you have a woman with 20% Framingham CAD risk how much will be her risk of CAD if she receives E / P ? Multiply 0.39 (RR)x 20% (Framingham.risk) $=$ approximative 8% risk of CAD with E / P.
- How big should be RR or Odds ratio?
- Depends on study. RCT, least prone to bias, a small variation is enough; in COHORT study RR>3, in CASE CONTROL study $\mathrm{OR}>4$ (Case control has a greater risk of bias)

1.NNT/NNH

	NNT	NNH
refer to	treatment as cure	treatment w/ side effects
\# people	to prevent 1 case treated (disease)	to prevent 1 case (disease)

2.Total:100 people

	disease	no disease
exposed:50	5	45
non exposed:50	0	50

1.NNT =NNH :\# people you need to treat/harm to prevent the appearance of 1 new case of disease (definition in table 1)
2. Example : How to calculate NNT/NNH from table 2

NNT/NNH : if you treat all 100 people you prevent the 5 cases of disease
so you need to treat $x=$ NNT to prevent 1 case of disease
apply 3 simple rule: $\mathrm{NNT}=1 \times 100 / 5=20$
meaning you need to treat 20 people in order to prevent 1 case of disease
also calculate : NNT/NNH = 1/ARR

Ask Mish

- CLINICAL TRIAL= intervention studies for the benefit of patients
- usually involves the administration of a test regimen to evaluate its safety and efficacy
- study has 2 arms: people on drug(intervention) and people on placebo (control) group
- $\quad \mathrm{RCT}=$ randomized controlled clinical trial : subjects randomly allocated into one group, intervention or control
- double blind: neither subject nor researchers know which group the subject is, intervention or control
- crossover study: switch arms of the study one point in time, intervention group becomes control and control becomes intervention
- community trial: an entire community receives a regimen testing how the regimen works in the real world

Ask Mish

WATCHING YOUR STEP - THE DIFFERENT STAGES OF CLINICAL DEVELOPMENT AND WHAT THEY EXAMINE

- For FDA approval 3 phases of the clinical trials must be passed:
- Phase 1 : testing safety in healthy volunteers
- Phase 2: testing efficacy (dose levels) in small group of patient volunteers
- Phase 3: testing efficacy and safety in larger group of patient volunteers. Phase 3 is considered a definitive test for FDA.
- Phase 4: not necessary for FDA approval; is called post marketing survey and focuses on long term safety (e.g. Vioxx)

Type of BIAS	DEFINITION	Important associations	Solutions
SELECTION	sample not representative	Berkson's bias = using hospital data nonrespondent bias= p.included in study are different than non-includ	random, independent sample
MEASUREMENT	gathering information distorts it	Hawthorne effect= people under observation behave differently	control group/placebo group
EXPERIMENTER EXPECTANCY	researcher's beliefs affect outcome	Pygmalion effect	double-blind design

- STATISTICS means world expressed in numbers
- World includes:
- events= action and
- categories = structures that have names "this" or "that" and that's why they are called nominal / categorical data e.g. gender (one category with 2 groups: males and females), population in a study (also 2 groups : on drug and on placebo) or categories with no groups (most of them)

type of event:

1. Independent events: no connection b/w them, e.g. blond hair and catch a cold.
2. Mutual exclusive events: one event excludes the possibility of the other happening in the same time, e.g. heads and tails for a coin flip

3. Non-mutual exclusive

- events: one event does not exclude the possibility of the other happening in the same time e.g. obese and diabetic

Ask Mish

Probability for a blonde to catch a cold (independent events): multiply the probability of each event expressed as hundredths.

Probability to have a head or a tail when flipping a coin :
ADD together the probability of each event

Probability for an obese patient to also have diabetes is add the 2 probabilities and subtract their product

A nominal data can be measured using one of the three above scales : rank order, interval or ratio

Descriptive Statistics	Inferential Statistics
measures groups/population (coz you can measure each member of the group)	takes a sample from a group and draw conclusion about the whole group (coz you cannot measure all!)
Result: distribution is a bell shape curve symmetric to a central point (mean=median=mode)	Result is expressed in confidence intervals

normal distribution example

- Mean = average $=$ add all quantities and divide by the number of quantities you added (Xo)
- \quad Median $=$ midpoint (Md)
- \quad Mode $=$ most frequent number (Mo)

Gaussian or Normal Distribution

Figure 1 Normal distribution of heart-rate measurements.

Normal Distribution

Xo<Md<M0

$M o<M d<X_{0}$

- ASYMMETRIC DISTRIBUTIONS:
- have a hump and a tail. If the tail is on negative side there is a negatively skewed distribution and if the tail is on positive side there is a positively skewed distribution. In both cases, mean is not equal to mode and is different from median.
- KURTIC DISTRIBUTIONS:
- LEPTOKURTIC: peaked
- PLATYKURTIC: flattened

STANDARD DEVIATION $(S)=$ average dispersion around the mean

If $\mathrm{N}=$ sample size is too big to be measured we take a number n of observations from it and measure
them.

Each measurement X is a number +error. Each time, the next measurement contains less error and is closer to the mean. This is called in statistics REGRESSION to the MEAN.

Finally we obtain a normal distribution where observations are dispersed from min to max around a mean. One way to measure DISPERSION is using a unit called STANDARD DEVIATION (S) which is an average dispersion around the mean.
Standard Deviaition
$S=\sqrt{\frac{\sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}}{n-1}}$
where
x_{k} is the observation value
\bar{x} is the mean value n is the number of observa
Σ means to sum or add up

- $n-I=$ degree of freedom (observations- control)

$$
S=\sqrt{\frac{\sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}}{n-1}}
$$

£ means to sum or add up
and the formulas for the standard deviation and the variance are as follows: ${ }^{6}$

The Standard Deviation for a Sample

$$
\begin{aligned}
S & =\sqrt{\frac{\text { Sum of squared deviations }}{\text { Number of data items }-1}} \\
& =\sqrt{\frac{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\cdots+\left(X_{n}-\bar{X}\right)^{2}}{n-1}} \\
& =\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

The Variance for a Sample

$$
\text { Variance }=S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

- DISPERSION IN STATISTICS can be measured not only using S, but also variance and range:
- $\mathrm{S}=$ standard deviation
- Variance
- \quad Range $=$ max. value $-\min$. value
in the left, the extended formulas for calculating S and variance for a sample (in case you need)

Standard deviation is used for calculating confidence intervals

IQ Score Distribution

- A standardized IQ test has a mean of 100 and a standard deviation of 15 . A person with $\mathrm{IQ}=115$ is at what percentile of IQ ?
- A.50th
- B.68th
- C.84th
- D.95th
- E.99th

answer: C (84th)

IN a NORMAL DISTRIBUTION approximative:

- 68% of the data are within one SD $(-1 ;+1)$
- 95% are within 2 SD $(-2 ;+2)$
- $\quad 99.7 \%$ are within 3 SD $(-3 ;+3)$
- 0.3% are beyond 3 SD.
- CONFIDENCE INTERVALS:

Ask Mish

- If you have a $\mathrm{N}=$ sample size -> you take and measure n outcomes $->$ you can calculate the mean Xo from these n outcomes. However the result is a distribution of outcomes around this mean. Confidence intervals is about how far from the mean you want to go to feel confident with the result.
- It is generally accepted that a 95% interval around the mean (meaning 2 SD above and 2 SD below the mean) would give a good estimation of the sample. This means that from 100 outcomes, based on the 95% CI formula you will be able to recognize as good 95 outcomes. You will make mistakes in 5 outcomes which you will recognize as good when in reality they are not.

- P VALUE:
- When we chose a 95% confidence interval we accepted that we have a probability p of making a mistake in 5\% cases, meaning a $p=0.05$ also known as p value

- TYPE I aka ALFA ERROR
- It is the error itself. When you recognize a good outcome when in reality is not you commit an error aka TYPE I or ALFA error. In statistics where 95% confidence interval is generally accepted there is a 5% cases that you can make a type I (ALFA) error.
- $\quad \mathrm{p}=$ probability $</=0.05$ to make an error in a study while type I (ALFA) is the error you actually make in 5% of outcomes at 95%
C.I.

General formula for a confidence interval

$\overline{\mathrm{X}} \pm \mathrm{Z} \sigma / \sqrt{\mathrm{N}}$		
Confidence	$\underline{\alpha} / 2$	\underline{Z} score
90%	0.05	1.65
95%	0.025	1.96
99%	0.005	2.58

The higher the confidence level, the wider the confidence interval.

- Use this to calculate a 95% confidence interval for μ
- To calculate a 95% confidence interval for μ

$$
95 \% \mathrm{CI}=\overline{\mathrm{X}} \pm 1.96 \mathrm{SE}
$$

- CALCULATING CONFIDENCE INTERVAL:

$$
\text { c.i. }=\bar{x} \pm \underbrace{Z\left(\frac{\sigma}{\sqrt{N}}\right)}
$$

This part of the equation is called the margin of error. Your book calls this section E.

- $\quad \mathrm{N}=$ sample size, you take n outcomes and calculate the $X=$ average. Margin of error includes: standard error (SE) and Z score.

Standard error $=\frac{\sigma_{x}}{\sqrt{N}}$
As sample size N goes up you have a better estimation from a larger N . So as N goes up, the error goes down meaning standard error (SE) is less error than standard deviation (sigma) in the formula on the left.

$$
z=\frac{x-\mu}{\sigma}
$$

$\mu=$ Mean
$\sigma=$ Standard Deviation
Z score or standard score tells you how far from the mean your C.I. goes and to calculate the Z score use the formula on the left where mean $=0$ and $S=1 . Z$ is actually how many standard deviations far from the mean goes the C.I. you chose.
For practical purpose,
Z=2 for 95\% c.i
$Z=2.5$ for 99% c.i.

- Compute a 95% C.I. knowing the following:
- mean $\mathrm{Xo}=67$
- \quad standard deviation $S=8$
- sample size $\mathrm{N}=16$
- consider $\mathrm{Z}=2$
- Answer: 95\% CI : between 63-71 including 63 and 71.

Ask Mish

RELATIVE RISK	95% Confidence Interval	INTERPRETATION
1.48	$(1.10-2.20)$	statistically significant
1.69	$(0.80-2.43)$	not stat. significant
0.73	$(0.55-0.94)$	statistically significant

- Q: Assuming the graph in the left presents 95% C.I. are the two HIV detection methods different from each other?
- A: When comparing 2 groups any overlap of C.I. means the groups are not statistically different. Therefore, method A and method B are no different in HIV detection.
- Q: When are the C.I for RR or odds ratio not statistically significant? (see table on left)
- A: If the given C.I contains 1.0 then there is no statistically effect for the exposure, meaning RISK is the SAME. When C.I. contains no 1.0 then there is a statistically significant INCREASED RISK.

Now the question is: what's the link between all these we described? I refer to categories, confidence intervals, p value, alfa error, etc?

- The link is this: imagine you want to compare 2 or more categories and draw a conclusion. First you need to DESIGN A STUDY. You need to know what do you want to compare in your study: only nominal data, interval data or nominal and interval data.

If the categories are not identical you can find either a correlation or a difference between them depending on categories.

Let's assume you found a difference. The next question : is this difference due to hazard or it is significantly statistic? To know this you will apply for each study a specific STATISTIC FORMULA specially designed for that study. You found a number and you want to know if this number is in your 95% confidence interval, that what you found is statistically significant. You take the number you obtained and check in the tables for the p value related to your number. If the p found <0.05 then YES, your study result shows a significant statistic difference. If p found >0.05, your study result shows no statistically difference.

REALITY

	DIFFERENCE	NO DIFFERENCE
DIFFERENCE	Type II error or β NO DIFFERENCE "false negative"	Typerror "false positive"

- HYPOTHESIS in STATISTICS (2):
- When the study finds a difference when a difference truly exists (box1) and when the study finds no difference when no difference exists (box4) everything is OK. (smiley)
- When the study finds a difference when it truly exists then this is called THE POWER of the study (to see difference)- the first box.
- In TYPE I error or alfa error the study finds a difference when no difference really exists. This is a "false positive" study. It equals p.
- In TYPE II error or beta error the study finds no difference when one truly exists. It's a "false negative" study. Usually:10-20\% but no more than 20%.
- POWER= 100 - beta error(\%) or 1-beta(decimal). You choose the power when you design the study. If the difference you need to find is small you need an increased power and you need to increase the SAMPLE SIZE which will also increase the costs. You have to find the optimum balance for all. Power $>80 \%$.

Scatter plots representing different values of the correlation coefficient.

Positive correlation... when one variable increases, the other wariable also increases.

Negative correlation... when one variable increases, the other variable decreases.

A CORRELATION:

- means two measures are related not why they are related. Does not mean one variable necessarily causes the other
- CORRELATION COEFFICIENT:
- indicates the DEGREE to which two measures are related. The further from 0 the stronger the relationship. Max. values +1 and -1 indicates a linear relationship. When coefficient $=0$ means the two variables have no linear relation to one another (e.g. height and exam scores).
- POSITIVE correlation: the 2 variables go the same direction
- NEGATIVE correlation: the 2 variables go in opposite directions
- TYPES of correlation: PEARSON compares 2 interval level variables and SPEARMAN - 2 ordinal l.variables.
- SCATTER PLOT is a graphical representation of a correlation

Table : SURVIVAL RATES after SURGERY

Number patients	1 YEAR	2 YEAR	3 YEAR	4 YEAR
172	90%	75%	50%	40%
take 100	90	75	50	40

- SURVIVAL ANALYSIS:
- is a class of statistical procedures for estimating the proportion of people who survive (y axis) in relation to the length survival time
- A survival curve starts with 100% (1.0 in graph) of the study population and shows the percentage of population still surviving at successive times for as long as information is available
- Median survival time is the time where 50% (0.5 in graph) are still alive.
- Median survival time is also called LIFE EXPECTANCY
- Q: What is the life expectancy after surgery?(check the table on the left)
- A: 3 years. (check 50% survival in table)
- Q: If the patient survives 2 years what is the chance for surviving for 3 years?
- A: $50 / 75=67 \%$. (At 3y: 50 survived from 75 that survived at 2 years considering 100 patients)

